A Hierarchical Singular Value Decomposition Algorithm for Low Rank Matrices
نویسندگان
چکیده
Singular value decomposition (SVD) is a widely used technique for dimensionality reduction and computation of basis vectors. In many applications, especially in fluid mechanics, the matrices are dense, but low-rank matrices. In these cases, a truncated SVD corresponding to the most significant singular values is sufficient. In this paper, we propose a tree based merge-and-truncate algorithm to obtain an approximate truncated SVD of the matrix. Unlike previous methods, our technique is not limited to “tall and skinny” or “short and fat” matrices and it can be used for matrices of arbitrary size. It is also an incremental algorithm, useful for online streaming applications. The matrix is partitioned into blocks and a truncated SVD of each block is used to obtain the final SVD. A comparison with existing techniques shows that a 5-10x speedup is possible.
منابع مشابه
Symbolic computation of the Duggal transform
Following the results of cite{Med}, regarding the Aluthge transform of polynomial matrices, the symbolic computation of the Duggal transform of a polynomial matrix $A$ is developed in this paper, using the polar decomposition and the singular value decomposition of $A$. Thereat, the polynomial singular value decomposition method is utilized, which is an iterative algorithm with numerical charac...
متن کاملGraph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members
Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...
متن کاملA Randomized Tensor Train Singular Value Decomposition
The hierarchical SVD provides a quasi-best low rank approximation of high dimensional data in the hierarchical Tucker framework. Similar to the SVD for matrices, it provides a fundamental but expensive tool for tensor computations. In the present work we examine generalizations of randomized matrix decomposition methods to higher order tensors in the framework of the hierarchical tensors repres...
متن کاملBatched QR and SVD Algorithms on GPUs with Applications in Hierarchical Matrix Compression
We present high performance implementations of the QR and the singular value decomposition of a batch of small matrices hosted on the GPU with applications in the compression of hierarchical matrices. The one-sided Jacobi algorithm is used for its simplicity and inherent parallelism as a building block for the SVD of low rank blocks using randomized methods. We implement multiple kernels based ...
متن کاملComparison of Rank Revealing Algorithms Applied to Matrices with Well Defined Numerical Ranks
For matrices with a well defined numerical rank in the sense that there is a large gap in the singular value spectrum we compare three rank revealing QR algorithms and four rank revealing LU algorithms with the singular value decomposition. The fastest algorithms are those that construct LU factorizations using rook pivoting. For matrices with a sufficiently large gap in the singular values all...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1710.02812 شماره
صفحات -
تاریخ انتشار 2017